Jacobi theta-functions and discrete Fourier transforms

Show simple item record

dc.contributor.author Ruzzi, M.
dc.date.accessioned 2016-01-24T12:41:15Z
dc.date.available 2016-01-24T12:41:15Z
dc.date.issued 2006-06-01
dc.identifier http://dx.doi.org/10.1063/1.2209770
dc.identifier.citation Journal of Mathematical Physics. Melville: Amer Inst Physics, v. 47, n. 6, 10 p., 2006.
dc.identifier.issn 0022-2488
dc.identifier.uri http://repositorio.unifesp.br/handle/11600/28964
dc.description.abstract Properties of the Jacobi Theta(3)-function and its derivatives under discrete Fourier transforms are investigated, and several interesting results are obtained. the role of modulo N equivalence classes in the theory of Theta-functions is stressed. An important conjecture is studied. (c) 2006 American Institute of Physics. en
dc.format.extent 10
dc.language.iso eng
dc.publisher Amer Inst Physics
dc.relation.ispartof Journal of Mathematical Physics
dc.rights Acesso restrito
dc.title Jacobi theta-functions and discrete Fourier transforms en
dc.type Artigo
dc.contributor.institution Universidade Federal de São Paulo (UNIFESP)
dc.description.affiliation Universidade Federal de São Paulo, Inst Fis Teor, BR-01405900 São Paulo, SP, Brazil
dc.description.affiliationUnifesp Universidade Federal de São Paulo, Inst Fis Teor, BR-01405900 São Paulo, SP, Brazil
dc.identifier.doi 10.1063/1.2209770
dc.description.source Web of Science
dc.identifier.wos WOS:000238730900035



File

File Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search


Browse

Statistics

My Account